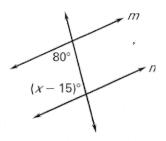
Namai			
Name	 	 	

For each diagram below, find the value of x that <u>makes the lines parallel</u>. You must state the postulates and/or theorems used. Your options are listed below.

Vertical Angles Congruence Theorem

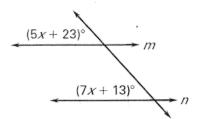
Alternate Interior Angles Theorem
Consecutive Interior Angles Theorem

Alternate Interior Angles **Converse** Theorem Consecutive Interior Angles **Converse** Theorem

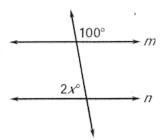

Linear Pair Postulate

Alternate Exterior Angles Theorem Corresponding Angles Postulate

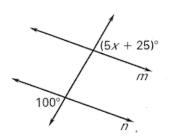
Alternate Exterior Angles **Converse** Theorem Corresponding Angles **Converse** Postulate


Postulate/Theorem Used

1)


x = ____

2)


x = ____

3)

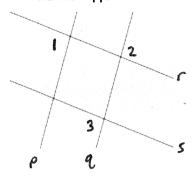
x =

4)

x = ____

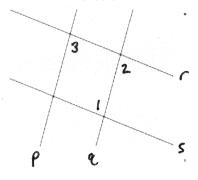
Using the 6 postulates and theorems about angle relationships, the transitive property, AND the 4 converse theorems/postulates we are going to prove lines are parallel

Vertical Angles Congruence Theorem Alternate Interior Angles Theorem Consecutive Interior Angles Theorem Linear Pair Postulate
Alternate Exterior Angles Theorem
Corresponding Angles Postulate


Transitive Property of Congruence

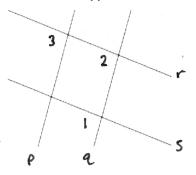
Alternate Interior Angles Converse Theorem Corresponding Angles Converse Theorem

Alternate Exterior Angles Converse Theorem Consecutive Interior Angles Converse Theorem


CLASS EXAMPLES:

1)	GIVEN:	pl	Iq	and	∠1	\cong	∠3
	PROVE:	r	119	6			

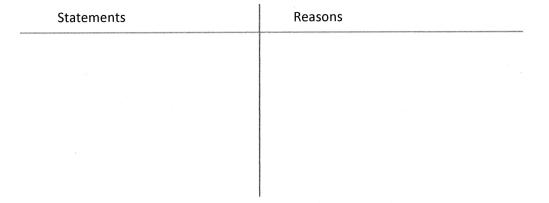
Statements	Reasons		

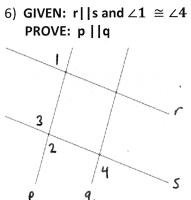

2) GIVEN: $r \mid |s|$ and $\angle 1 \cong \angle 3$ PROVE: $p \mid |q|$

Statements	Reasons
• , , , , , , , , , , , , , , ,	

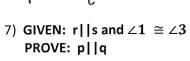
On Your Own:

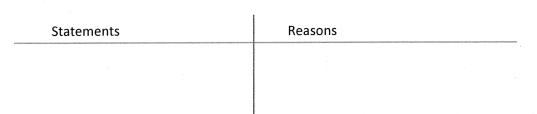
3) GIVEN: p||q and $\angle 1 \cong \angle 3$ PROVE: r||s

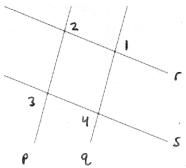



Statements	Reasons

4) GIVEN: r s and ∠1 ≘ PROVE: p q	<u>,</u> ∠3
3	
p q	5
**Now I	'm go
5) GIVEN: p q and ∠1 PROVE: r s	≅ ∠4 ~
4	


Statements	Reasons	***************************************


Now I'm going to start adding extra angles – you pick your way to prove!



Statements	Reasons		

